a2 United States Patent

Davidson et al.

US009069637B2

US 9,069,637 B2
Jun. 30, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(60)

(1)

(52)

(58)

DYNAMIC FEATURE ENHANCEMENT IN
CLIENT SERVER APPLICATIONS AND HIGH
VOLUME SERVER DEPLOYMENT WITH
DYNAMIC APP STORE INTEGRATION

Inventors: Jason A. Davidson, Granite Bay, CA
(US); Somnath Chakrabarti, Portland,
OR (US); Neeru S. Pahwa, Bangalore
(IN); Micah K. Bhatki, Chicago, IL.

(US)

Assignee: Intel Corporation, Santa Clara, CA
(US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 13/556,899

Filed: Jul. 24, 2012
Prior Publication Data
US 2013/0191823 Al Jul. 25,2013

Related U.S. Application Data

Provisional application No. 61/511,410, filed on Jul.
25,2011.

Int. Cl1.
GO6F 9/445 (2006.01)
HO4L 29/06 (2006.01)
GO6F 21/57 (2013.01)
HO4L 29/08 (2006.01)
U.S. CL

CPC GO6F 8/62 (2013.01); HO4L 67/42 (2013.01);
GO6F 21/575 (2013.01); GOG6F 9/44526
(2013.01); HO4L 67/34 (2013.01)
Field of Classification Search
CPC e, GOGF 9/44526
USPC e 717/151, 178
See application file for complete search history.

102

R

(56) References Cited

U.S. PATENT DOCUMENTS

2/2009 Bantz et al.
3/2011 Bethlehemet al. 707/705
11/2011 Danford et al.

(Continued)
OTHER PUBLICATIONS

7,493,654 B2
7,912,822 B2*
8,060,074 B2

“Whatis SaaS”; webopedia.com website as captured by the Wayback
Machine Internet Archive on May 2, 2010.*

Jim Bird; “Developing and Testing in the Cloud”; Building Real
Software blog on blogspot.com, Jul. 11, 2011.*

Ken Saunders; “Firefox Add-ons Installation Guide”; accessfirefox.
org website; Aug. 7, 2008.*

(Continued)

Primary Examiner — Qing Chen

Assistant Examiner — Clint A Thatcher

(74) Attorney, Agent, or Firm — Grossman,
Perreault & Pfleger, PLL.C

Tucker,

(57) ABSTRACT

Generally, this disclosure provides methods and systems for
dynamic feature enhancement in client server applications
and for high volume server deployment with dynamic app
store integration and further enable the delivery of a secure
server in a pre-configured turnkey state through an automated
process with increased efficiency tailored to mass production.
The system may include a server application module config-
ured to receive request packets from, and send response pack-
ets to, a web based client application, the packets comprising
input data, output data and control commands associated with
a feature; and a script engine module coupled to the server
application module, the script engine module configured to
identify a plug-in application on a remote server, download
the plug-in application and execute the plug-in application
under control of the server application module, wherein the
plug-in application implements the feature.

10 Claims, 7 Drawing Sheets

Cllent

204 204

Premises & Web based cilent

application

Web based client
epplication

=

|

Local
Sarver A

210

s

Feature Feature
Plugrin 1 Plug-in 2

Feature

e Plug-in N

130

US 9,069,637 B2

Page 2
(56) References Cited OTHER PUBLICATIONS
“Customizing the vSphere Client”; VMWare.com website; May 21,
U.S. PATENT DOCUMENTS 2009

8,813,223 B2 82014 Chakrabarti et al. . .
2008/0109801 ALl* 5/2008 Levine etal. ... 17171 Office Action mailed Dec. 4, 2013 from related U.S. Appl. No.
2011/0126192 Al* 572011 Frostetal. 717178 13/557.336.
2011/0258301 Al* 10/2011 McCormick et al. 709/222
2012/0124581 A1 5/2012 Nitta))
2013/0031158 Al* 1/2013 Salsburgccccocovevnn.. 709/203 * cited by examiner

U.S. Patent Jun. 30, 2015 Sheet 1 of 7 US 9,069,637 B2
Client Client
Premises A Premises B
102 - - 1120
< | S
Client-Server | C!iﬁn[t)-Servgr
with Dynamic | wi FeaytE?emlc |
Feature YY)
Enhancement | Enhancement [
[|
| |
—_—— — —_——
A T
130
140
< r—-——-—---]
Remot_e server PR, | Remo?e server |
(plug-in store) (plug-in store)
L _—_ _|I
A
150

N

Third party plug-in
engineering /development

r—— - - /1

Third party plug-in eoe Third party plug-in
engineering /development engineering /development

FIG. 1

U.S. Patent Jun. 30, 2015 Sheet 2 of 7 US 9,069,637 B2
102 1
Client 204 204
Premises A Web based client ; Web based client ;
application o000 application
206 <
Local
Server A 212

Server Application

i

Script Engine

5
S

214

210
<

v

Feature
Plug-in 1

Feature
Plug-in 2

Li

Feature
Plug-in N

130

FIG. 2

U.S. Patent Jun. 30, 2015 Sheet 3 of 7 US 9,069,637 B2

310
K Determine availability of plug-in
applications from third party developers

'

Obtain the plug-in applications

:

3301
Store the plug-in applications on a server

l

340
{ Respond to requests for plug-in applications from a

client-server at a client premises by downloading

the plug-in applications to the client-server system

320{

FIG. 3

US 9,069,637 B2

Sheet 4 of 7

Jun. 30, 2015

U.S. Patent

v DId

1014

/

waby
juswaebeuep

UlBLIO(] |O43U0D)

Jspiroid [evod
W aoines pabeuepy qem
0Sv M obp
OtV
Jabeuep
WA /N
0cvy
. .
. :
(XX N .
=™ | =™ |
(0174
| ainjee4
(43U10) M SO (xnur) z SO (smopuiy) | SO M I
\ N WA \ ZAA \ L NA 90%
P2 7 \
cly cly cLy
801 80¥ 20t

2

4014

U.S. Patent Jun. 30, 2015 Sheet 5 of 7 US 9,069,637 B2

510
K Configure a system with a boot partition
having trusted boot software, a temporary
file system, kernel software and a virtual
machine manager

'

Execute the trusted boot software to perform

520{ software initialization on the system comprising:
Building a root partition

Building a virtual machine partition

Obtain necessary components from a local
application store on network area storage

530{ Clone the software initialized system such
that the cloned system is available for

configuration and initialization of subsequent
systems

FIG. 5

U.S. Patent

Jun. 30, 2015 Sheet 6 of 7 US 9,069,637 B2

600

610{

Accept a request from an ISV to
participate in an integration service

'

620 {

Grant access to the ISV

l

630{

Generate a cloud environment workspace

l

640 K

Configure the workspace based on requirements
specified by the ISV

'

650{

Enable the ISV to remotely develop a software
product or service in the workspace

'

660 {

Perform a final integration, test and release of the
software product or service

FIG. 6

U.S. Patent Jun. 30, 2015 Sheet 7 of 7 US 9,069,637 B2

700

710
{ Accept a request from a customer to
install a new application

'

720{
Obtain customization information for the
application from the customer

'

730
K Provide a workspace for configuration and
installation of the application

l

740
{ Obtaining a license key from a license key store

'

750
{ Configure the license key based on the
customization information

'

760
K Install the application with the license key from the
workspace

FI1G. 7

US 9,069,637 B2

1
DYNAMIC FEATURE ENHANCEMENT IN
CLIENT SERVER APPLICATIONS AND HIGH
VOLUME SERVER DEPLOYMENT WITH
DYNAMIC APP STORE INTEGRATION

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 61/511,410 filed Jul. 25, 2011, which is
incorporated by reference herein in its entirety.

FIELD

The present disclosure relates to client server applications,
and more particularly, to dynamic feature enhancement in
client server applications. The present disclosure also relates
to high volume server deployment, and more particularly, to
high volume server deployment with dynamic application
(app) store integration.

BACKGROUND

Many computing systems are based on a client-server
model and provide features and functionality through plug-in
applications. Typically, when new software features become
available, they are distributed as patches, upgrades or
updates. These upgrades are generally installed through a
relatively inefficient process that involves stopping the exist-
ing applications that may be executing on either the client or
the server, performing the update, and then restarting the
application. This process creates undesirable downtime and
application unavailability.

Additionally, computing system manufacturers and/or dis-
tributors typically build and configure systems by cloning a
disk or memory system that, upon boot up, will perform
limited customizations. Generally, these systems must sub-
sequently undergo more extensive customization and con-
figuration at the customer site, including error-prone license
key acquisition, rather than being ready to use “out of the
box.” This is particularly true with systems that employ a
redundant array of independent disks (RAID), encrypted file
systems and/or trusted boot or execution environments.

BRIEF DESCRIPTION OF THE DRAWINGS

Features and advantages of embodiments of the claimed
subject matter will become apparent as the following Detailed
Description proceeds, and upon reference to the Drawings,
wherein like numerals depict like parts, and in which:

FIG. 1 illustrates a top-level block diagram of one exem-
plary embodiment consistent with the present disclosure;

FIG. 2 illustrates a block diagram of one exemplary
embodiment consistent with the present disclosure;

FIG. 3 illustrates a flowchart of operations of one exem-
plary embodiment consistent with the present disclosure;

FIG. 4 illustrates a block diagram of another exemplary
embodiment consistent with the present disclosure;

FIG. 5 illustrates a flowchart of operations of another
exemplary embodiment consistent with the present disclo-
sure;

FIG. 6 illustrates a flowchart of operations of another
exemplary embodiment consistent with the present disclo-
sure; and

FIG. 7 illustrates a flowchart of operations of another
exemplary embodiment consistent with the present disclo-
sure.

10

15

20

25

30

35

40

45

50

55

60

2

Although the following Detailed Description will proceed
with reference being made to illustrative embodiments, many
alternatives, modifications, and variations thereof will be
apparent to those skilled in the art.

DETAILED DESCRIPTION

Generally, this disclosure provides methods and systems
for dynamic feature enhancement in client server applications
and for high volume server deployment with dynamic app
store integration. These techniques enable the addition of new
features in a client server software product through the use of
script engines and application emulation without requiring an
upgrade of client or server components or associated inter-
ruption of services. These techniques further enable the deliv-
ery of a secure server in a pre-configured turnkey state
through an automated process with increased efficiency tai-
lored to mass production. The automated process may also
provide for the dynamic addition of services, including prod-
uct keys, from an app store over the internet.

FIG. 1 illustrates a top-level block diagram 100 of one
exemplary embodiment consistent with the present disclo-
sure. A number of client premises 102, 120 are connected to
the internet 130. At each client premises 102, 120 there is a
client-server with dynamic feature enhancement capability
through the remote acquisition of binary or script applications
(e.g., apps or plug-ins), as will be described in greater detail
below. Remote servers (or plug-in stores) 140 may be avail-
able over the internet 130 to maintain a collection of updated
plug-ins that may include the latest available features and
functionality. The remote servers 140 may obtain these plug-
ins from third party developers 150.

FIG. 2 illustrates a block diagram 200 of one exemplary
embodiment consistent with the present disclosure. Details of
the client-server system at client premises 102 are shown. At
each client premises 102 there are a number of web based
client applications 204 which may be run on one or more
client computer systems. The web based client applications
204 are communicatively coupled to a server 206 which may
be local to the client premises 102. Server 206 may host a
server application 212, a script engine 214 and one or more
feature plug-in components 210. Feature plug-in components
210 may be software modules that, when executed, perform
particular functions and/or provide specific features that are
requested by the web based client application 204.

Server application 212 acts as an interface between web
based client application 204 and script engine 214. Server
application 212 receives data from web based client applica-
tion 204, where such data may represent input to one of the
feature plug-in components 210. The input data may be
wrapped in hypertext transfer protocol (HTTP) request pack-
ets. Server application 212 unwraps the input data and passes
it to script engine 214, which determines the appropriate
feature plug-in component 210 for processing of the input
data and passes that data to the selected component. Similarly,
when a feature plug-in component 210 produces output data,
that data is passed back to server application 212, through
script engine 214, where it may be wrapped in HTTP
response packets and sent to the appropriate web based client
application 204. In some embodiments, the HT'TP response
packets may be, for example, hypertext markup language
(HTML) packets or extensible markup language (XML)
packets. The web based client application 204 receives these
packets and renders a response that emulates the feature plug-
in component 210 that produced the output data.

Script engine 214 may also detect and identify the avail-
ability of new and/or updated plug-ins from remote servers

US 9,069,637 B2

3

(or plug-in stores) 140 over the internet 130. The remote
servers 140 maintain a collection of updated plug-ins having
the latest available features and functionality. The remote
servers 140 may obtain these plug-ins from third party devel-
opers 150. Script engine 214 may be capable of dynamically
loading and executing these plug-ins, which enable Server
206 at client premises 102 to provide the updated features and
functionality to web based client applications 204 in a trans-
parent manner, that is, without requiring a reload or restart of
any client components or local server components.

Script engine 214 may be configured with information
about the external interface of each feature plug-in compo-
nent 210 which enables it to expose the plug-in 210 to the web
based client application 204 without requiring changes to the
web based client application 204.

In some embodiments, any suitable transfer protocol may
be used as a substitute for HT'TP, including proprietary pro-
tocols. Some examples of web based client applications
include, but are not limited to, Adobe AIR®, Microsoft®
Silverlight and NETFLIX video applications. Feature plug-in
components 210 may be standalone applications imple-
mented as binary executables or scripts.

In some embodiments, the server application 212 may
serve an asynchronous JavaScript and XML (AJAX) based
HTMIL./JavaScript web page to wrap the input and output data
to the web based client application 204. The web based client
application 204 may be an HTMIL/JavaScript aware client
application.

FIG. 3 illustrates a flowchart 300 of operations of one
exemplary embodiment consistent with the present disclo-
sure. At operation 310, the availability of plug-in applications
from third party developers is determined. At operation 320,
the plug-in applications are obtained from the third party
developers. They may be downloaded over the internet. At
operation 330, the downloaded plug-in applications are
stored on a server. At operation 340, in response to requests
for plug-in applications from a client server at a client pre-
mises, the requested plug-in applications are downloaded to
the client-server system. The request from the client-server
system may be for new plug-ins or for updates to existing
plug-ins.

FIG. 4 illustrates a block diagram 400 of another exem-
plary embodiment consistent with the present disclosure. The
embodiment may be implemented as a system which is
hosted, in part, on a platform comprising a control domain
402, one or more virtual machines (VMs) 408, and a VM
manager 420. In some embodiments, a virtual machine may
be a real machine, including processor and memory for
example, or may be a software implementation that emulates
a machine. The virtual machine may include one or more
isolated guest operating systems installed within a host oper-
ating system. The platform may further comprise processors
(CPUs), memory, storage, network ports, user interfaces and
other suitable components which are not illustrated for sim-
plicity. The control domain 402 may host one or more features
406 which may be applications (apps) to perform certain
functions or services. In some embodiments, features 406
may be provided, in whole or in part, by third party develop-
ers. Management agent 404 maintains features 406 by obtain-
ing new features and updates to existing features as they
become available. Management agent 404 also makes fea-
tures 406 available to VMs 408 as needed.

VMs 408 provide workspaces for independent software
vendors (ISVs) 410 to develop, configure and test software
products and services. VMs 408 provide operational capabili-
ties such as operating systems 412 which may include Win-
dows, Linux or other suitable operating systems. VMs 408

10

15

20

25

30

35

40

45

50

55

60

65

4

may be individual real machines, partitions within real
machines or any other suitable configuration of processing
capability across a platform.

VM manager 420 integrates and/or supervises the control
domain 402 and VMs 408. VM manager 420 may also pro-
vide access to the internet 430. VM manager 420 may also be
configured with a trusted boot capability as part of a secure
operating environment. The trusted boot capability can verify
that unauthorized modifications to the system have not
occurred. VM manager 420 may also communicate with web
portal 440 over internet 430. Web portal 440 may be config-
ured to direct users to the system. VM manager 420 may also
communicate with managed service providers (MSPs) 450
that interact with the system over internet 430.

In one embodiment, a method is provided, through access
to the VMs 408, for building and configuring systems at a
factory with reduced user intervention. The systems may be
matched to the underlying hardware platform through use of
an appropriately configured VM 408. FIG. 5 illustrates a
flowchart 500 of operations of an exemplary embodiment
consistent with the present disclosure. At operation 510, a
system is configured with a boot partition comprising trusted
boot software (T-Boot), a temporary file system, kernel soft-
ware and a virtual machine manager (VMM). At operation
520, the T-Boot is executed to perform software initialization
on the system. The software initialization comprises building
aroot partition and building a virtual machine (VM) partition.
The root partition build may include configuring an encrypted
root file system and software stack. The VM partition build
may include configuring an encrypted application and cus-
tomer data storage repository. Components needed for the
software initialization are obtained from a local application
store on network area storage (NAS). At operation 530, the
software initialized system is cloned so that it can be made
available for configuration and initialization during subse-
quent system builds, contributing to improved efficiency for
mass production.

In another embodiment of the present disclosure, there is
provided a service model through which ISVs may access a
provided workspace in which they develop, configure and test
their software products and services. The workspace is an ISV
factory which may be implemented in an environment such as
the Intel® Hybrid Cloud product or other suitable cloud envi-
ronment. The workspace may generally include a machine, in
the cloud, that is configured with a requested operating sys-
tem and any other desired capabilities, upon which the ISV
may perform their setup, development and validation, includ-
ing customer trials. This provides an alternative to the tradi-
tional model where an ISV builds their own development
environment, obtains a local copy of a software development
kit (SDK), builds and tests their product locally and then
submits a final version to an app store for review.

FIG. 6 illustrates a flowchart 600 of operations of an exem-
plary embodiment consistent with the present disclosure. At
operation 610, a request is accepted from an ISV to partici-
pate in an integration service. At operation 620, the ISV is
granted access to participate, which may comprise a login
capability. The decision to grant access may be based on an
agreement, such as a non-disclosure agreement. The ISV may
also, at this point, make decisions about price, deployment
strategies and model or product configurations. At operation
630, a cloud environment workspace is generated. At opera-
tion 640, the workspace is configured based on requirements
specified by the ISV. These requirements may include speci-
fications regarding the hardware and/or operating systems of
the workspace. The ISV may specity, for example, a particu-
lar operating system such as Windows or Linux. At operation

US 9,069,637 B2

5

650, the ISV is enabled to remotely develop a software prod-
uct or service in the workspace. At operation 660, a final
integration, test and release of the software product or service
is performed from the workspace. This process, or portions
thereof, may be repeated as necessary to generate product
updates including fixes and patches.

In another embodiment of the present disclosure, there is
provided a method for dynamic deployment of software at a
customer location. The customer is prompted for basic infor-
mation (if any) that is needed for the installation and the
process automatically installs the software in a working con-
figuration, with license keys pulled from a remote portal and
activated into the product.

FIG. 7 illustrates a flowchart 700 of operations of an exem-
plary embodiment consistent with the present disclosure. At
operation 710, a request from a customer, to install a new
application, is accepted. At operation 720, customization
information for the application is obtained from the customer.
This information may include requirements for features and
options, information about the customer for licensing pur-
poses, or any other information relevant to setup of the appli-
cation. At operation 730, a workspace is provided for con-
figuration and installation of the application. Any associated
data structures, schema, or plug-ins for the application may
also be provided to the workspace for the configuration and
installation process. At operation 740, a license key is
assigned from a license key store. At operation 750, the
license key is configured based on the customization infor-
mation. At operation 760, the application, along with the
configured license key, is installed from the workspace to the
customer location.

Embodiments of the methods described herein may be
implemented in a system that includes one or more storage
mediums having stored thereon, individually or in combina-
tion, instructions that when executed by one or more proces-
sors perform the methods. Here, the processor may include,
for example, a system CPU (e.g., core processor) and/or
programmable circuitry. Thus, it is intended that operations
according to the methods described herein may be distributed
across a plurality of physical devices, such as processing
structures at several different physical locations. Also, it is
intended that the method operations may be performed indi-
vidually or in a subcombination, as would be understood by
one skilled in the art. Thus, not all of the operations of each of
the flow charts need to be performed, and the present disclo-
sure expressly intends that all subcombinations of such
operations are enabled as would be understood by one of
ordinary skill in the art.

The storage medium may include any type of tangible
medium, for example, any type of disk including floppy disks,
optical disks, compact disk read-only memories (CD-
ROMs), compact disk rewritables (CD-RWs), digital versa-
tile disks (DVDs) and magneto-optical disks, semiconductor
devices such as read-only memories (ROMs), random access
memories (RAMs) such as dynamic and static RAMs, eras-
able programmable read-only memories (EPROMs), electri-
cally erasable programmable read-only memories (EE-
PROMs), flash memories, magnetic or optical cards, or any
type of media suitable for storing electronic instructions.

“Circuitry”, as used in any embodiment herein, may com-
prise, for example, singly or in any combination, hardwired
circuitry, programmable circuitry, state machine circuitry,
and/or firmware that stores instructions executed by program-
mable circuitry. An app may be embodied as code or instruc-
tions which may be executed on programmable circuitry such
as a host processor or other programmable circuitry. A mod-
ule, as used in any embodiment herein, may be embodied as

20

35

40

45

6

circuitry. The circuitry may be embodied as an integrated
circuit, such as an integrated circuit chip.

Thus the present disclosure provides methods and systems
for dynamic feature enhancement in client server applications
and for high volume server deployment with dynamic app
store integration and further enable the delivery of a secure
server in a pre-configured turnkey state through an automated
process with increased efficiency tailored to mass production.

According to one aspect there is provided a system. The
system may include a server application module configured
to receive request packets from, and send response packets to,
a web based client application, and the packets include input
data, output data and control commands associated with a
feature. The system of this example may also include a script
engine module coupled to the server application module, the
script engine module configured to identify a plug-in appli-
cation on a remote server, download the plug-in application
and execute the plug-in application under control of the server
application module, and the plug-in application implements
the feature.

Another example system includes the forgoing compo-
nents and the feature implementation includes processing the
input data and generating the output data in accordance with
the control commands.

Another example system includes the forgoing compo-
nents and the script engine module exposes an interface ofthe
plug-in application to the web based client application.

Another example system includes the forgoing compo-
nents and the server application module is an HTTP server
application.

Another example system includes the forgoing compo-
nents and the input data, the output data and the control
commands are wrapped in HTML packets.

Another example system includes the forgoing compo-
nents and the input data, the output data and the control
commands are wrapped in XML packets.

According to another aspect there is provided a method.
The method may include determining availability of plug-in
applications from third party developers. The method of this
example may also include obtaining the plug-in applications
from the third party developers in response to the determin-
ing. The method of this example may further include storing
the plug-in application on a server. The method of this
example may further include responding to requests for the
plug-in applications from a client-server system at a client
premises by downloading the plug-in applications to the cli-
ent-server system.

According to another aspect there is provided a method.
The method may include configuring a system with a boot
partition including T-Boot software, a temporary file system,
kernel software and a VMM. The method of this example may
also include executing the T-Boot to perform software initial-
ization on the system, and the software initialization includes
building a root partition and building a VM partition, and
components needed for the software initialization are
obtained from a local application store on NAS. The method
of this example may further include cloning the software
initialized system, and the cloned system is available for
configuration and initialization of subsequent systems.

Another example method includes the forgoing operations
and the root partition building includes configuring an
encrypted root file system and software stack.

Another example method includes the forgoing operations
and the VM partition building includes configuring encrypted
application and customer data storage.

According to another aspect there is provided a method.
The method may include accepting a request from an ISV, the

US 9,069,637 B2

7

request to participate in an integration service. The method of
this example may also include granting access to the ISV in
response to the request. The method of this example may
further include generating a cloud environment workspace.
The method of this example may further include configuring
the workspace based on requirements specified by the ISV.
The method of this example may further include enabling the
ISV to remotely develop a software product or service in the
workspace. The method of this example may further include
performing a final integration, test and release of the software
product or service in the workspace.

Another example method includes the forgoing operations
and the granting is based on reaching an agreement with the
ISV.

Another example method includes the forgoing operations
and the remote development further includes testing and con-
figuring the software product or service.

According to another aspect there is provided a method.
The method may include accepting a request from a customer,
the request to install a new application. The method of this
example may also include obtaining application customiza-
tion information from the customer. The method of this
example may further include providing a workspace for con-
figuration and installation of the application. The method of
this example may further include obtaining a license key from
a license key store. The method of this example may further
include configuring the license key based on the application
customization information. The method of this example may
further include installing the application with the configured
license key from the workspace.

Another example method includes the forgoing operations
and further includes supplying data structures and plug-ins
associated with the application to the workspace.

According to another aspect there is provided at least one
computer-readable storage medium having instructions
stored thereon which when executed by a processor, cause the
processor to perform the methods as described in the
examples above.

The terms and expressions which have been employed
herein are used as terms of description and not of limitation,
and there is no intention, in the use of such terms and expres-
sions, of excluding any equivalents of the features shown and
described (or portions thereof), and it is recognized that vari-
ous modifications are possible within the scope of the claims.
Accordingly, the claims are intended to cover all such equiva-
lents. Various features, aspects, and embodiments have been
described herein. The features, aspects, and embodiments are
susceptible to combination with one another as well as to
variation and modification, as will be understood by those
having skill in the art. The present disclosure should, there-
fore, be considered to encompass such combinations, varia-
tions, and modifications.

10

15

20

25

30

35

40

45

50

8

What is claimed is:

1. A system, comprising: a server to execute a server appli-
cation module to cause said server to receive request packets
from, and send response packets to, a client computer system
executing a web based client application, wherein said pack-
ets comprise input data, output data and control commands
associated with a feature; wherein said server is further to
execute a script engine module coupled to said server appli-
cation module, said script engine module to cause said server
to identify a plug-in application on a remote server base at
least on said input data received in said server from web based
client application in said client computer system, download
said plug-in application to said server, execute said plug-in
application utilizing said input data in said server under con-
trol of said server application module, and pass said output
data resulting from said execution of said plug-in back to said
web based client application in said client computer system,
wherein said plug-in application implements said feature.

2. The system of claim 1, wherein implementing said fea-
ture comprises processing said input data and generating said
output data in accordance with said control commands.

3. The system of claim 1, wherein said script engine mod-
ule exposes an interface of said plug-in application to said
web based client application.

4. The system of claim 1, wherein said server application
module is a hypertext transport protocol (HTTP) server appli-
cation.

5. The system of claim 1, wherein said input data, said
output data and said control commands are wrapped in hyper-
text markup language (HTML) packets.

6. The system of claim 1, wherein said input data, said
output data and said control commands are wrapped in exten-
sible markup language (XML) packets.

7. The system of claim 1, wherein: said server application
module is further configured to act as an interface between
said web based client application and said script engine mod-
ule and to unwrap said input data and pass the unwrapped
input data to said script engine module; said plug-in applica-
tion is to process said input data; and said script engine
module is further configured to pass said input data to said
plug-in application.

8. The system of claim 7, wherein: said plug-in application
produces said output data; said script engine module is further
configured to provide said output data to said server applica-
tion module; and said server application module is configured
to include said output data in said response packets.

9. The system of claim 7, wherein said script engine mod-
ule is configured to dynamically load and execute said plug-in
application without requiring a restart or reload of a client
executing said web based client application.

10. The system of claim 3, wherein said script engine
module is configured to expose said plug-in module without
requiring changes to said web-based client application.

#* #* #* #* #*

